Lesson Learned from Integrating OpenClinica with Other IT Systems

Tomas Skripcak
IT scientist at DKTK
DKTK

- German Consortium for Translational Cancer Research
 - Building efficient translational research units focused on cancer research
 - CCP (Clinical Communication Platform) in DKTK handles recruitment of uniquely annotated and stratified cancer patients into translational research projects and trials

- RadiationDosePlan-Image/Biomarker-Outcome platform provides sustainable radiotherapy specific IT infrastructure
 - Large scale clinical trials
 - Collection of imaging data and treatment plans
Why healthcare systems integration

- Create a uniform layer which connect federated clinical and non-clinical IT systems so they can:
 - Leverage each other functions
 - Exchange and use each other data
Integration and interoperability

- Interoperability
 - Syntactic = ability to exchange data
 - Semantic = ability to meaningfully interpret data and use it

- What makes it tick:
 - Protocols (HTTP, …)
 - Services (REST, SOAP, …)
 - Data formats (XML, JSON, …)
 - Terminologies, ontologies, data elements and information models (ICD10, UMLS, CDASH, CDISC ODM)
Common integration artifacts

- SingleSignOn (SSO): unify user credentials
- Enterprise service bus (ESB): unify communication
- Common identifiers (patients, specimens, …)
 - Global IDs
 - ID list services
- Reverse proxy: hide the complexity of underlying infrastructure = one public IP, one domain, one identity
- Common systems in clinical research IT environment:
 - HIS, Pseudonym generator, CTMS & EDC, PACS, LIMS…
OpenClinica integration abilities

- LDAP users
- SOAP web services
- REST
 - Web services
 - RESTful URLs
- eCRFs enhancement (HTML + JavaScript)
- Alternate ways
 - Program web access with HTML document parsing
 - Direct access to OC database
SingleSignOn

- LDAP users feature: make SSO possible BUT!!!
 - LDAP user can not use SOAP web services

- Solution 1:
 - Standard OC user as the primary account
 - OC SOAP study ws (listAll) for authentication or,
 - OAuth OC REST services

- Solution 2:
 - Auto-generated OC user account
 - Navigation to OC from external system (auto-login)
 - POST user credential
OC Web services - SOAP

- Reliable and secure
- Deployed as separate web app
- Limited set of features
- REST seems to be the future direction
- Some features not working e.g.
 - Secondary ID field ignored in subject creation
 - StudySubjectID generation properties ignored
 - Auto StudySubjectID: empty string required
 - Gender property always mandatory
Web services REST

- Originally designed for OC Designer
 - *designer is freshly open sourced :)
- Currently very limited features
- RESTful URLs
 - POST/GET approach (user credential, JSON/XML formatted CDISC ODM clinical data)
 - User credentials in clear text

```python
import requests

session=requests.Session()
loginData={"j_username": "ocuser", "j_password" : "pass"}

r=session.post("http://server/OpenClinica/j_spring_security_check", loginData)

r=session.get("http://server/OpenClinica/rest/clinicaldata/json/view/S_DEFAULTS1/SS_XXY/*//*/includeDNs=y&includeAudits=y")
```
eCRFs enhancement

- JavaScript make it possible to
 - Programmatically work with data from eCRF
 - Trigger external web service/web application

- Make any eCRF data field easily navigable:
 - `RIGHT_ITEM_TEXT (<div id="uniquedentifier"> </div>)`
 - `var fieldRow = document.getElementById(divFieldName).parentNode.parentNode;`
 - `var input = fieldRow.getElementsByTagName('input')`

- Domain specific annotations of eCRF fields
 - E.g. in external DB
 - When reliable access to data needed
Alternate ways

- Whatever a user can see a program can see
 - Program access to OC and parsing of HTML DOM tree
 - *not very sustainable (depending on generated HTML)
 - OK for administration usage

- Direct access to OC DB
 - *can be a security issue
 - *can slow down the production DB performance
 - Read only please (bypassing OC application logic)

- Use only as a last resort
Common identifier

- **StudySubject**
 - Tracking patient across studies: Person ID (pseudonym)
 - Merging patient data from another system (e.g. HIS)
 - StudySubject secondary ID
 - Merging patient data from multiple systems
 - PatientID List service (keep the links between IDs separate)

- Saving IDs from different systems in eCRF
 - Make sure data fields are annotated
 - PHI flag if not exportable
Example: RadPlanBio platform

- Sustainable IT solution focused on clinical/preclinical trials
- Radiotherapy specific study features: treatment plans and imaging data
- Multi-centre data exchange and collection (national and international translational projects)
RadPlanBio components

- **Highlighted features:**
 - Virtual server infrastructure with partitioned secured areas for each partner site
 - Imaging data base on DICOM and DICOM RT standards
 - Support for randomisation in clinical trials (Randi2)
 - OpenSource
 - Deployment: web access, hosting, local installation

- **Main components:**
 - EDC & CTMS: OpenClinica
 - Patient identity management service: Mainzelliste
 - PACS server & DICOM viewer: Conquest, DWV
 - Desktop client: DICOM data upload
 - Portal: integration & single access point
Deployment example
Integration portal

- Platform infrastructure database
 - Enable systems communication
- Unify access web access
 - Single URL + SSO
- Integrate RadPlanBio components
 - OC, Conquest, Mainzelleiste
- Extra features
 - Randomisation based on Randi2
Use case: patient registration

- Separate database of patient identities
 - Patient => PID (pseudonym)
 - DB per site

- PID generation
 - 8 character string
 - (read-write fault tolerant)

- Record linkage
 - phonetic code matching
 - configurable for many languages
 - (hear-write fault tolerant)

- Technology: REST Mainzelliste + SOAP OpenClinica
Use case: DICOM data upload

- Desktop client
 - SSO – OC ws SOAP
 - Study/subject/event/item browse
 - DICOM clinical trial deidentification
 - Utilisation of patient PID
 - DICOM supl. 142
 - DICOM ROI harmonisation
 - Standard organ naming
 - Uploading DICOM data
 - Auto import to PACS
 - Import DICOM eCRF

- Technology:
 - REST + SOAP OpenClinica
 - eCRF enhancement
Use case: PACS integration

- Conquest
 - PACS extensions with Lua scripts
 - Querying PACS server
 - JSON formatted DICOM study
 - ZIP and download

- Configurable DICOM viewers
 - Communication over WADO
 - HTML5 = DWV
 - Java = Weasis

- Technology:
 - Lua
 - REST
 - eCRF enhancement
 - WADO
Wish list - now

- Unification of web services strategy
 - REST base
 - Migrate all services from SOAP (study subject, data import)
 - Preferred OAuth 2.0 authentication
 - Side effect: LDAP fully usable

- Direct support for semantic annotation in CDISC ODM
 - E.g. `<Alias Context="UMLS" Name="C1880229"> aka DICOM Study`

- Randomisation as a first class citizen
 - Subject group class
 - E.g. Randi2
Wish list - future

- Direct support for controlled terminology
 - ICD 10, ICD-O-3, ...

- Pluginable architecture for OC
 - Advanced OC modularisation
 - Dynamic loading/unloading of plugins
 - Spring-plugin...

- User changeable localisation

- Reporting
 - Custom reports
Thanks for your attention…

- IT group
 - Tomas Skripcak
 - Uwe Just
 - Marvin Schmidt
- Medical physics group
 - Steffen Loeck
 - Armin Luehr
- Medico-legal group
 - Daniel Buettner
 - Monique Simon
- Leaders
 - Michael Baumann
 - Mechthild Krause
- And the great community around open source clinical IT software